Skip to main content

6 REASONS WHY THERMOCOUPLES ARE BEING AVOIDED IN EMOBILITY!

https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/content_01_r01-5cfa0041fcaa3b0001ea6dc3.jpg
Thermocouples are widely used in automotive industry for temperature testing at product design and EOL (End of Line) stages and for permanent monitoring afterwards. However, with the increasing voltage levels in Emobility thermocouples possess many risks in product design and testing stages. Some of them are safety related risk and have potential to be life threatening for employees (research and test engineers).
Thermocouples are based on the principles, that a small voltage (in milli-volts) gets produced when a junction (joint) of two dissimilar metal wires is cooled or heated. The generated voltage signal is measured at the other end of the metal wires and calibrated for the temperature range. During the temperature testing the junction end is put on the test object and voltage is being measured at the other end to estimate the temperature of test object.
Now imagine if the two metal wires are put on the 1000 V Battery or Motor for temperature testing and somehow the test engineers touch the wire by mistake. Even worse how accurate will be the milli-volt signal when it passes through an environment where there is high electric and magnetic field.
Without getting into more technicality let us take a closer look on the common reasons why thermocouples have failed in Emobility testing and should be replaced with intrinsically safe sensors.
1. Safety
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/image_safety_r03-5cf206a2f97e8e0001261264.jpg
It is very obvious and common sensical thing to find out the safety risk of using thermocouples in Emobility testing, especially when test engineers have to adjust sensing location such as finding the right hot spot or reach to the measuring points that are not easily accessible (Inverters, Stator Windings, Battery Cooling duct). Thermocouples are subject to creating a short circuit and electrocution risks to the employees.

2. Noise
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/image_noise_r03-5cf20a9765590f00011b3285.jpg
With the Emobility going towards 1000V and even higher 2500V (for commercial vehicles), thermocouples are highly susceptible to noise. The milli-volt signal requires lot of isolation under such large voltages and even then, the signal is not clear enough to measure accurate temperature.


3. Larger Size  
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/image_larger-size_r03-5cf20820f0485300015c600b.jpg
Thermocouples are not suitable for Emobility applications that has very tiny space for putting sensors such as Charging Points, Invertor IGBTs, Battery Inter-cell temperature measurement etc. It has been observed that thermocouples are less responsive and inaccurate (up to 20 to 30 Deg Celsius) if they are not put directly on the charging points. 

4. Non-Linearity Over The Range  
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/image_non-linearity-over-the-range_r03-5cf20835fec70f0001d1a33f.jpg
Though the thermocouples are calibrated for a certain range, they still need complex compensation algorithm to maintain linearity over the range since they are being used at harsh conditions (High electric, chemical and magnetic fields) and different test environments.

5. Longer Response Time  
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/image_longer-response-time_r03-5cf20848b4600a000103490a.jpg
Faster and accurate measurement is critical for Emobility during the performance, life cycle and abuse testing. Not only the accuracy, thermocouples are also limited by the response time requirements of Emobility applications such as detection of Thermal Runaway Issues, Charging Point Temperature, Stator Winding Temperature etc.
6. Poor Repeatability 
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/image_lesser-repeatability_r03-5cf2085874c3e2000131adb1.jpg
Thermocouples are made of two dissimilar metallic wires and susceptive to material purity which varies from batch to batch and manufacturer to manufacturer. This variation creates calibration issues resulting into non-repeatability of accurate measurements. Further the chemical composition of metal changes with time especially if they are put into chemical environment like Batteries.

Solution
With the currently available technologies Fiber Optic Temperature sensors stand out clearly to be the most suitable sensors for Emobility applications at higher voltages (250V+). The major benefits of Fiber optic Temperature sensors are: 
1. Safety: Fiber optics are safe – highest dielectric strength, ~1pC, tested up to 1500kV
2. Noise: Sensor are immune to electric, chemical and magnetic environments. Being used without any isolation, in applications that has 1500kV+ voltage, up to 25 Tesla magnetic field and chemical environment ranging from 0 to 14pH without any interference to the sensory readings.
3. Size: Ultra small sensors (Diameter of up to 0.4mm) to fit into tiniest spaces. 
4. Linearity: Fiber optic sensors transmit light signals through glass, the purest form of silica. The sensors are linear and does not need any compensation and special algorithms.
5. Response Time: Fiber optic temperature system has a milliseconds response level. Response rate varies between 1ms to 200ms depending on the type of monitor selected for the application. 
6. Repeatability: Fiber Optic temperature sensors are very stable and repeatable over the entire range without getting influenced by and external fields.
https://cdn.kitsune.tools/v1/5bed49a7299c810001e423bd/content_01-5ce834b88d998c0001cbaab9.jpg
Conclusion

Thermocouples are generally being avoided in Emobility to keep the highest standards of safety at workplace, provide easy tools to engineers for testing and measurement and reduce time in making complex temperature compensation algorithms. Fiber Optic Temperature sensors are being accepted by engineers as the best and even better alternate of thermocouples for Emobility applications.

Comments

Popular posts from this blog

WHAT ARE THE BENEFITS OF FIBER OPTIC SENSOR IN CORE TEMPERATURE MONITORING OF CYLINDRICAL CELL

The eMobility sector is going through its transformation phase. With the increasing focus on electric vehicle from the public and private sector, every player in the eMobility industry is working relentlessly on increasing the performance of the electric vehicle with higher efficiency, larger capacity and reduced size. The only objective of all this research and development is to make electric vehicle at par or even better than IC engines at a lower cost. High Voltage EV Batteries, being the most critical component of the electric vehicle are the ones that are focused most for capacity enhancement, performance optimization and Cost/size reduction. Researchers in the entire value chain of EV Battery, Cell, Module and Pack level are constantly working on fast charging and capacity enhancement projects. Introduction: Battery thermal management is one of the most critical aspect in the design and development of EV Batteries for fast charging and

RUGGED MONITORING had great success in Beijing Battery and EV Expo – 2019

Rugged Monitoring Exhibition in Beijing, China Rugged Monitoring Hall-3 (Booth # 1070), Beijing, China Rugged Monitoring team had participated as an Exhibitor in Battery & EV Expo – 2019 held in Beijing, China. The exhibition  was  started on Saturday, 06-Jul-2019 and went on till Tuesday, 09-Jul-2019 . The show was attended by all major Electric Vehicle manufacturers, Battery manufacturers, Charging Station manufacturers, and their suppliers. We had a good booth location in Hall-3 (# 1070) very close to major Electric Vehicle players like BYD, SAIC, Dongfeng NISSAN, BAIC BJEV, Chery, Foton, etc. We were there with our major products R501 , O201 , T301 , L201 , range of Fiber Optic Temperature sensors suitable for E-mobility and accessories. Fiber Optic Technology for E-Mobility The show was very successful as we had busy 3.5 days during the show. On average 4-5 visitors were at our booth every hour, mainly the research and design engineers from Battery, EV, a