The eMobility sector is going through its transformation phase. With the increasing focus on electric vehicle from the public and private sector, every player in the eMobility industry is working relentlessly on increasing the performance of the electric vehicle with higher efficiency, larger capacity and reduced size. The only objective of all this research and development is to make electric vehicle at par or even better than IC engines at a lower cost. High Voltage EV Batteries, being the most critical component of the electric vehicle are the ones that are focused most for capacity enhancement, performance optimization and Cost/size reduction. Researchers in the entire value chain of EV Battery, Cell, Module and Pack level are constantly working on fast charging and capacity enhancement projects. Introduction: Battery thermal management is one of the most critical aspect in the design and development of EV Batteries for fast charging and
Thermocouples are widely used in automotive industry for temperature testing at product design and EOL (End of Line) stages and for permanent monitoring afterwards. However, with the increasing voltage levels in Emobility thermocouples possess many risks in product design and testing stages. Some of them are safety related risk and have potential to be life threatening for employees (research and test engineers). Thermocouples are based on the principles, that a small voltage (in milli-volts) gets produced when a junction (joint) of two dissimilar metal wires is cooled or heated. The generated voltage signal is measured at the other end of the metal wires and calibrated for the temperature range. During the temperature testing the junction end is put on the test object and voltage is being measured at the other end to estimate the temperature of test object. Now imagine if the two metal wires are put on the 1000 V Battery or Motor for temperature testing and somehow the t